NihilismAbsurdism.Blogspot.com
"The Absurd" refers to the conflict between the human tendency to seek inherent meaning in life and the human inability to find any.
Nihilism : from the Latin nihil, nothing) is the philosophical doctrine suggesting the negation of one or more putatively meaningful aspects of life
Nihilism : from the Latin nihil, nothing) is the philosophical doctrine suggesting the negation of one or more putatively meaningful aspects of life
Sunday, June 26, 2011
Saturday, June 25, 2011
The SINGULARITY is Nearer than you think !
Microprocessor chronology
From Wikipedia, the free encyclopedia
Contents |
[edit] 1970s
In the 1970s the microprocessors are mostly 8-bit and manufactured with the NMOS technology.
Date | Name | Developer | Max clock (first version) | Word size (bits) | Process | Transistors |
---|---|---|---|---|---|---|
1971 | PPS-25 | Fairchild | 400 kHz | 4 | Multi-chip, pMOS[1][2] | |
1971 | 4004 | Intel | 740 kHz | 4 | 10 µm | 2,250 pMOS |
1972 | 8008 | Intel | 500 kHz | 8 | 10 μm | 3,500 pMOS |
1972 | PPS-4 | Rockwell | 200 kHz | 4 | pMOS[3][4] | |
1973 | μCOM 4 | NEC | 1 MHz | 4 | 2,500 NMOS[5][6] | |
1973 | IMP-16 | National | 715 kHz | 16 | Multi-chip, pMOS[7][8] | |
1973 | Mini-D | Burroughs | 1 MHz | 8 | pMOS[9] | |
1974 | IMP-8 | National | 715 kHz | 8 | Multi-chip, pMOS[10] | |
1974 | 8080 | Intel | 2 MHz | 8 | 6 μm | 6,000 NMOS |
1974 | 5065 | Mostek | 1.4 MHz | 8 | pMOS[11] | |
1974 | TLCS-12 | Toshiba | 1 MHz | 12 | NMOS[10] | |
1974 | CP1600 | General Instrument | 3.3 MHz | 16 | NMOS[12][13][14] | |
1974 | IMP-4 | National | 500 kHz | 4 | Multi-chip, pMOS[10] | |
1974 | 4040 | Intel | 740 kHz | 4 | 10 μm | 3,000 pMOS |
1974 | 6800 | Motorola | 1 MHz | 8 | - | 4,100 NMOS[10] |
1974 | TMS 1000 | Texas Instruments | 400 kHz | 4 | 8 μm | 8,000 |
1974 | PACE | National | 16 | pMOS[12][15] | ||
1975 | 6100 | Intersil | 4 MHz | 12 | - | 20,000 |
1975 | 2650 | Signetics | 1.2 MHz | 8 | NMOS[10] | |
1975 | PPS-8 | Rockwell | 256 kHz | 8 | pMOS[10] | |
1975 | F-8 | Fairchild | 2 MHz | 8 | NMOS[10] | |
1975 | CDP 1801 | RCA | 2 MHz | 8 | 5 μm | 5,000 CMOS two-chip[16][17] |
1975 | 6502 | MOS Technologies | 1 MHz | 8 | - | 4,000 |
1975 | BPC[18][19] | Hewlett Packard | 10 MHz | 16 | - | 6,000 + ROM |
1976 | CDP 1802 | RCA | 6.4 MHz | 8 | CMOS[20][21] | |
1976 | Z-80 | Zilog | 2.5 MHz | 8 | 4 μm | 8,500 |
1976 | TMS9900 | Texas Instruments | 3.3 MHz | 16 | - | 8,000 |
1976 | 8x300 | Signetics | 8 MHz | 8 | Bipolar[22][23] | |
1977 | 8085 | Intel | 3.0 MHz | 8 | 3 μm | 6,500 |
1978 | 6809 | Motorola | 1 MHz | 8 | 5 μm | 40,000 |
1978 | 8086 | Intel | 5 MHz | 16 | 3 μm | 29,000 |
1978 | 6801 | Motorola | - | 8 | 5 μm | 35,000 |
1979 | Z8000 | Zilog | - | 16 | - | 17,500 |
1979 | 8088 | Intel | 5 MHz | 8/16[24] | 3 μm | 29,000 |
1979 | 68000 | Motorola | 8 MHz | 16/32[25] | 4 μm | 68,000 |
- This list is incomplete; you can help by expanding it.
[edit] 1980s
In the 1980s the microprocessors are 16-bit and 32-bit, mostly manufactured with the CMOS technology.
Date | Name | Developer | Clock | Process | Transistors |
---|---|---|---|---|---|
1980 | 16032 | National | - | - | 60,000 |
1981 | 6120 | Harris Corporation | 10 MHz | - | 20,000 |
1981 | ROMP | IBM | 10 MHz | 2 µm | 45,000 |
1981 | T-11 | DEC | 2.5 MHz | 5 µm | 17,000 NMOS |
1982 | RISC-I[26] | UC Berkeley | 1 MHz | 5 µm | 44,420 NMOS |
1982 | FOCUS | Hewlett Packard | 18 MHz | 1.5 µm | 450,000 |
1982 | 80186 | Intel | 6 MHz | - | 55,000 |
? | 80C186 | Intel | 6 MHz | - | ? CMOS |
1982 | 80188 | Intel | 8 MHz | - | 29,000 |
1982 | 80286 | Intel | 6 MHz | 1.5 µm | 134,000 |
1983 | RISC-II | UC Berkeley | 3 MHz | 3 µm | 40,760 NMOS |
1983 | MIPS[27] | Stanford University | 2 MHz | 3 µm | 25,000 |
1984 | 68020 | Motorola | 16 MHz | 2 µm | 190,000 |
1984 | 32032 | National | - | - | 70,000 |
1984 | V20 | NEC | 5 MHz | - | 63,000 |
1985 | 80386 | Intel | 16 MHz | 1.5 µm | 275,000 |
1985 | MicroVax II 78032 | DEC | 5 MHz | 3.0 µm | 125,000 |
1985 | R2000 | MIPS | 8 MHz | 2 µm | 115,000 |
1988 | R3000 | MIPS | 12 MHz | 1.2 µm | 120,000 |
1986 | Z80000 | Zilog | - | - | 91,000 |
1986 | SPARC | Sun | 40 MHz | 0.8 µm | 800,000 |
1986 | V60[28] | NEC | 16 MHz | 1.5 µm | 375,000 |
1987 | CVAX 78034 | DEC | 12.5 MHz | 2.0 µm | 134,000 |
1987 | ARM2 | ARM Limited | 18 MHz | 2 µm | 25,000[29] |
1987 | Gmicro/200[30] | Hitachi | - | 1.0 µm | 730,000 |
1987 | 68030 | Motorola | 16 MHz | 1.3 µm | 273,000 |
1987 | V70[28] | NEC | 20 MHz | 1.5 µm | 385,000 |
1988 | i960 | Intel | 10 MHz | 1.5 µm | 250,000 |
1989 | VAX DC520 "Rigel" | DEC | 35 MHz | 1.5 µm | 320,000 |
1989 | 80486 | Intel | 25 MHz | 1 µm | 1,180,000 |
1989 | i860 | Intel | 25 MHz | 1 µm | 1,000,000 |
- This list is incomplete; you can help by expanding it.
[edit] 1990s
In the 1990s the microprocessors were mostly 32-bit. The external RAM speed no longer follow the microprocessor's. So two clocks appears, an external and a faster internal. The internal is the one listed here.
Date | Name | Developer | Clock | Process | Transistors (M) | Hardware threads per core |
---|---|---|---|---|---|---|
1990 | 68040 | Motorola | 40 MHz | - | 1.2 | |
1990 | POWER1 | IBM | 20-30 MHz | 1.0 µm | 6.9 | |
1991 | R4000 | MIPS Computer Systems | 100 MHz | 0.8 µm | 1.35 | |
1991 | NVAX | DEC | 62.5-90.91 MHz | 0.75 µm | 1.3 | |
1991 | RSC | IBM | 33 MHz | 0.8 µm | 1.0[31] | |
1992 | Alpha 21064 | DEC | 100-200 MHz | 0.75 µm | 1.68 | |
1992 | microSPARC I | Sun | 40-50 MHz | 0.8 µm | 0.8 | |
1992 | PA-7100 | Hewlett Packard | 100 MHz | 0.80 µm | 0.85[32] | |
1993 | PowerPC 601 | IBM, Motorola | 50-80 MHz | 0.6 µm | 2.8 | |
1993 | Pentium | Intel | 60-66 MHz | 0.8 µm | 3.1 | |
1993 | POWER2 | IBM | 55-71.5 MHz | 0.72 µm | 23 | |
1994 | 68060 | Motorola | 50 MHz | 0.6 µm | 2.5 | |
1994 | Alpha 21064A | DEC | 200-300 MHz | 0.5 µm | 2.85 | |
1994 | R4600 | QED | 100 - 125 MHz | 0.65 µm | 2.2 | |
1994 | PA-7200 | Hewlett Packard | 125 MHz | 0.55 µm | 1.26 | |
1994 | PowerPC 603 | IBM, Motorola | 60-120 MHz | 0.5 µm | 1.6 | |
1994 | PowerPC 604 | IBM, Motorola | 100-180 MHz | 0.5 µm | 3.6 | |
1994 | PA-7100LC | Hewlett Packard | 100 MHz | 0.75 µm | 0.90 | |
1995 | Alpha 21164 | DEC | 266-333 MHz | 0.5 µm | 9.3 | |
1995 | UltraSPARC | Sun | 143–167 MHz | 0.47 µm | 5.2 | |
1995 | SPARC64 | HAL Computer Systems | 101–118 MHz | 0.40 µm | - | |
1995 | Pentium Pro | Intel | 150-200 MHz | 0.35 µm | 5.5 | |
1996 | Alpha 21164A | DEC | 400-500 MHz | 0.35 µm | 9.7 | |
1996 | K5 | AMD | 75-100 MHz | 0.5 µm | 4.3 | |
1996 | R10000 | MTI | 150-250 MHz | 0.35 µm | 6.7 | |
1996 | R5000 | QED | 180 - 250 MHz | 0.35 µm | 3.7 | |
1996 | SPARC64 II | HAL Computer Systems | 141–161 MHz | 0.35 µm | - | |
1996 | PA-8000 | Hewlett-Packard | 160-180 MHz | 0.50 µm | 3.8 | |
1996 | P2SC | IBM | 150 MHz | 0.29 µm | 15 | |
1997 | RS64 | IBM | 125 MHz | ? nm | ? | |
1997 | Pentium II | Intel | 233-300 MHz | 0.35 µm | 7.5 | |
1997 | PowerPC 620 | IBM, Motorola | 120-150 MHz | 0.35 µm | 6.9 | |
1997 | UltraSPARC IIs | Sun | 250-400 MHz | 0.35 µm | 5.4 | |
1997 | S/390 G4 | IBM | 370 MHz | 0.5 µm | 7.8 | |
1997 | PowerPC 750 | IBM, Motorola | 233-366 MHz | 0.26 µm | 6.35 | |
1997 | K6 | AMD | 166-233 MHz | 0.35 µm | 8.8 | |
1998 | RS64-II | IBM | 262 MHz | 350 nm | 12.5 | |
1998 | Alpha 21264 | DEC | 450-600 MHz | 0.35 µm | 15.2 | |
1998 | MIPS R12000 | SGI | 270-400 MHz | 0.25 µm, 0.18 µm | 6.9 | |
1998 | RM7000 | QED | 250 - 300 MHz | 0.25 µm | 18 | |
1998 | SPARC64 III | HAL Computer Systems | 250-330 MHz | 0.24 µm | 17.6 | |
1998 | S/390 G5 | IBM | 500 MHz | 0.25 µm | 25 | |
1998 | PA-8500 | Hewlett Packard | 300-440 MHz | 0.25 µm | 140 | |
1998 | POWER3 | IBM | 200 MHz | 0.25 µm | 15 | |
1999 | Pentium III | Intel | 450-600 MHz | 0.25 µm | 9.5 | |
1999 | RS64-III | IBM | 450 MHz | 220 nm | 34 | 2 |
1999 | PowerPC 7400 | Motorola | 350-500 MHz | 200-130 nm | 10.5 | |
1999 | Athlon | AMD | 500-1000 MHz | 0.25 µm | 22 |
- This list is incomplete; you can help by expanding it.
[edit] 2000s
In the 2000s the microprocessors clock increase reach a ceiling because of the heat dissipation barrier. Because of this multi-core machine appears. 64-bit processors become mainstream.
Date | Name | Developer | Clock | Process | Transistors (M) | Cores per die / Dies per module |
---|---|---|---|---|---|---|
2000 | Athlon XP | AMD | 1.33-1.73 GHz | 180 nm | 37.5 | 1 / 1 |
2000 | Duron | AMD | 550 MHz-1.3 GHz | 180 nm | 25 | 1 / 1 |
2000 | RS64-IV | IBM | 600 MHz-750 MHz | 180 nm | 44 | 1 / 2 |
2000 | Pentium 4 | Intel | 1.3-2 GHz | 180-130 nm | 42 | 1 / 1 |
2000 | SPARC64 IV | Fujitsu | 450–810 MHz | 130 nm | - | 1 / 1 |
2000 | z900 | IBM | 918 MHz | 180 nm | 47 | 1 / 12, 20 |
2001 | MIPS R14000 | SGI | 500-600 MHz | 130 nm | 7.2 | 1 / 1 |
2001 | POWER4 | IBM | 1.1-1.4 GHz | 180-130 nm | 174 | 2 / 1, 4 |
2001 | UltraSPARC III | Sun | 750-1200 MHz | 130 nm | 29 | 1 / 1 |
2001 | Itanium | Intel | 733-800 MHz | 180 nm | 25 | 1 / 1 |
2001 | PowerPC 7450 | Motorola | 733-800 MHz | 180-130 nm | 33 | 1 / 1 |
2002 | SPARC64 V | Fujitsu | 1.1-1.35 GHz | 130 nm | 190 | 1 / 1 |
2002 | Itanium 2 | Intel | 0.9-1 GHz | 180 nm | 410 | 1 / 1 |
2003 | PowerPC 970 | IBM | 1.6-2.0 GHz | 130-90 nm | 52 | 1 / 1 |
2003 | Pentium M | Intel | 0.9-1.7 GHz | 130-90 nm | 77 | 1 / 1 |
2003 | Opteron | AMD | 1.4-2.4 GHz | 130 nm | 106 | 1 / 1 |
2004 | POWER5 | IBM | 1.65-1.9 GHz | 130-90 nm | 276 | 2 / 1, 2, 4 |
2005 | Opteron "Athens" | AMD | 1.6-3.0 GHz | 90 nm | 114 | 1 / 1 |
2005 | Pentium D | Intel | 2.8-3.2 GHz | 90 nm | 115 | 1 / 2 |
2005 | Athlon 64 X2 | AMD | 2-2.4 GHz | 90 nm | 243 | 2 / 1 |
2005 | UltraSPARC IV | Sun | 1.05-1.35 GHz | 130 nm | 66 | 2 / 1 |
2005 | UltraSPARC T1 | Sun | 1-1.4 GHz | 90 nm | 300 | 8 / 1 |
2005 | Xenon | IBM | 3.2 GHz | 90-45 nm | 165 | 3 / 1 |
2006 | Core Duo | Intel | 1.1-2.33 GHz | 90-65 nm | 151 | 2 / 1 |
2006 | Core 2 | Intel | 1.06-2.67 GHz | 65-45 nm | 291 | 2 / 1, 2 |
2006 | Cell/B.E. | IBM, Sony, Toshiba | 3.2-4.6 GHz | 90-45 nm | 241 | 1+8 / 1 |
2006 | Itanium "Montecito" | Intel | 1.4-1.6 GHz | 90 nm | 1720 | 2 / 1 |
2007 | POWER6 | IBM | 3.5-4.7 GHz | 65 nm | 790 | 2 / 1 |
2007 | SPARC64 VI | Fujitsu | 2.15-2.4 GHz | 90 nm | 543 | 2 / 1 |
2007 | UltraSPARC T2 | Sun | 1-1.4 GHz | 65 nm | 503 | 8 / 1 |
2007 | Opteron "Barcelona" | AMD | 1.8-3.2 GHz | 65 nm | 463 | 4 / 1 |
2008 | Phenom | AMD | 1.8-2.6 GHz | 65 nm | 450 | 2, 3, 4 / 1 |
2008 | z10 | IBM | 4.4 GHz | 65 nm | 993 | 4 / 7 |
2008 | PowerXCell 8i | IBM | 2.8-4.0 GHz | 65 nm | 250 | 1+8 / 1 |
2008 | SPARC64 VII | Fujitsu | 2.4-2.88 GHz | 65 nm | 600 | 4 / 1 |
2008 | Atom | Intel | 0.8-1.6 GHz | 65-45 nm | 47 | 1 / 1 |
2008 | Core i7 | Intel | 2.66-3.2 GHz | 45-32 nm | 730 | 2, 4, 6 / 1 |
2008 | Opteron "Shanghai" | AMD | 2.3-2.9 GHz | 45 nm | 751 | 4 / 1 |
2009 | Phenom II | AMD | 2.5-3.2 GHz | 45 nm | 758 | 2, 3, 4, 6 / 1 |
2009 | SPARC64 VIIIfx | Fujitsu | 2.0 GHz | 45 nm | 760 | 8 / 1 |
2009 | Opteron "Istanbul" | AMD | 2.2-2.8 GHz | 45 nm | 904 | 6 / 1 |
[edit] 2010s
Date | Name | Developer | Clock | Process | Transistors (M) | Cores per die / Dies per module | Hardware threads per core |
---|---|---|---|---|---|---|---|
2010 | POWER7 | IBM | 3-4.14 GHz | 45 nm | 1200 | 4, 6, 8 / 1, 4 | 4 |
2010 | Itanium "Tukwila" | Intel | 2 GHz | 65 nm | 2000 | 2, 4 / 1 | 2 |
2010 | Opteron "Magny-cours" | AMD | 1.7-2.4 GHz | 45 nm | 1810 | 4, 6 / 2 | 1 |
2010 | Xeon "Nehalem-EX" | Intel | 1.73-2.66 GHz | 45 nm | 2300 | 4, 6, 8 / 1 | 2 |
2010 | z196 | IBM | 5.2 GHz | 45 nm | 1400 | 4 / 6 | 1 |
2010 | SPARC T3 | Sun | 1.6 GHz | 45 nm | 2000 | 16 / 1 | 8 |
2010 | SPARC64 VII+ | Fujitsu | 2.66-3.0 GHz | 45 nm | ? | 4 / 1 | 2 |
2010 | Intel "Westmere" | Intel | 1.86-3.33 GHz | 32 nm | 1170 | 4-6 / 1 | 2 |
2011 | Intel "Sandy Bridge" | Intel | 1.6-3.4 GHz | 32 nm | 995[33] | 2, 4 / 1 | (1,) 2 |
2011 | AMD Fusion | AMD | 1.0-1.6 GHz | 40 nm | 380[34] | 1, 2 / 1 | 1 |
2011 | Xeon E7 | Intel | 1.73-2.67 GHz | 32 nm | 2600 | 4, 6, 8, 10 / 1 | 1-2 |
[edit] References
- ^ Ogdin 1975, pp. 57–59, 77
- ^ According to Ogdin 1975, the Fairchild PPS-25 was first delivered in 2Q 1971 and the Intel 4004 in 4Q 1971.
- ^ Ogdin 1975, pp. 72, 77
- ^ Rockwell PPS-4, The Antique Chip Collector's Page. Accessed on line June 14, 2010.
- ^ Ryoichi Mori, Hiroaki Tajima, Morihiko Tajima and Yoshikuni Okada (October 1977). Table 2.2, p. 51. "Microprocessors in Japan". Euromicro Newsletter 3 (4): 50–7. doi:10.1016/0303-1268(77)90111-0.
- ^ NEC 751 (uCOM-4), The Antique Chip Collector's Page. Accessed on line June 11, 2010.
- ^ Ogdin 1975, pp. 70, 77
- ^ National Semiconductor IMP-16, The Antique Chip Collector's Page. Accessed on line June 11, 2010.
- ^ Ogdin 1975, pp. 55, 77
- ^ a b c d e f g Ogdin 1975, p. 77
- ^ Ogdin 1975, pp. 65, 77
- ^ a b David Russell (February 1978). "Microprocessor survey". Microprocessors 2 (1): 13–20, See p. 18. doi:10.1016/0308-5953(78)90071-5.
- ^ Microprocessors - The Early Years 1971–1974, The Antique Chip Collector's Page. Accessed on line June 16, 2010.
- ^ "CP1600 16-Bit Single-Chip Microprocessor", data sheet, General Instrument, 1977. Accessed on line June 18, 2010.
- ^ Allen Kent, James G. Williams, ed (1990). "Evolution of Computerized Maintenance Management to Generation of Random Numbers". Encyclopedia of Microcomputers. 7. Marcel Dekker. p. 336. ISBN 0824727061.
- ^ RCA COSMAC 1801, The Antique Chip Collector's Page. Accessed on line June 14, 2010.
- ^ "CDP 1800 μP Commercially available" (PDF). Microcomputer Digest 2 (4): 1–3. October 1975.
- ^ "Hybrid Microprocessor". Retrieved 2008-06-15.
- ^ "HP designs Custom 16-bit μC Chip" (PDF). Microcomputer Digest 2 (4): 8. October 1975.
- ^ RCA COSMAC 1802, The Antique Chip Collector's Page. Accessed on line June 14, 2010.
- ^ "CDP 1802" (PDF). Microcomputer Digest 2 (10): 1, 4. April 1976.
- ^ Hans Hoffman; John Nemec (April 1977). "A fast microprocessor for control applications". Euromicro Newsletter 3 (3): 53–59. doi:10.1016/0303-1268(77)90010-4.
- ^ Microprocessors - The Explosion 1975-1976, The Antique Chip Collector's Page. Accessed on line June 18, 2010.
- ^ The Intel 8088 had an 8-bit external data bus but internally used a 16-bit architecture.
- ^ The Motorola 68000 had a 16-bit external data bus but internally used 32-bit registers.
- ^ "Berkeley Hardware Prototypes". Retrieved 2008-06-15.
- ^ Patterson, David A. (1985). "Reduced instruction set computers". Communications of the ACM 28: 8. doi:10.1145/2465.214917.
- ^ a b Kimura S, Komoto Y, Yano Y (1988). "Implementation of the V60/V70 and its FRM function". Micro, IEEE 8 (2): 22–36. doi:10.1109/40.527.
- ^ The Experimental IHU-2 Aboard P3D: About ARM Architecture
- ^ Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K (1988). "Realization of Gmicro/200". Micro, IEEE 8 (2): 12–21. doi:10.1109/40.526.
- ^ Moore CR, Balser DM, Muhich JS, East RE (1992). "IBM Single Chip RISC Processor (RSC)". Proceedings of the 1991 IEEE International Conference on Computer Design on VLSI in Computer & Processors. IEEE Computer Society. pp. 200–4. ISBN 0-8186-3110-4.
- ^ "PA-RISC Processors". Retrieved 2008-05-11.
- ^ http://www.anandtech.com/show/4118/a-closer-look-at-the-sandy-bridge-die
- ^ http://www.avsforum.com/avs-vb/showthread.php?s=75ab046a2a3e7839557c22b89ff1ccd5&p=19470009#post19470009
- sandpile.org for x86 processor information
- Ogdin, Jerry (January 1975). "Microprocessor scorecard". Euromicro Newsletter 1 (2): 43–77. doi:10.1016/0303-1268(75)90008-5.
Subscribe to:
Posts (Atom)